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Liquids are in thermal equilibrium and have a non-zero structure factor

SðQ! 0Þ = ½hN2i � hNi2�=hNi = �0kBT�T in the long-wavelength limit where

�0 is the number density, T is the temperature, Q is the scattering vector and �T

is the isothermal compressibility. The first part of this result involving the

number N (or density) fluctuations is a purely geometrical result and does not

involve any assumptions about thermal equilibrium or ergodicity, so is obeyed

by all materials. From a large computer model of amorphous silicon, local

number fluctuations extrapolate to give Sð0Þ = 0.035 � 0.001. The same

computation on a large model of vitreous silica using only the silicon atoms and

rescaling the distances gives Sð0Þ = 0:039� 0:001, which suggests that this

numerical result is robust and perhaps similar for all amorphous tetrahedral

networks. For vitreous silica, it is found that Sð0Þ = 0:116� 0:003, close to the

experimental value of Sð0Þ = 0:0900� 0:0048 obtained recently by small-angle

neutron scattering. Further experimental and modeling studies are needed to

determine the relationship between the fictive temperature and structure.

1. Introduction

Correlated density fluctuations over large length scales can be

determined from the small Q limit of the structure factor SðQÞ,

and thus can be obtained directly from diffraction experiments

(Egami & Billinge, 2003). The structure factor can be defined

in terms of the real-space pair density �ðrÞ via the sine Fourier

transform

Q½SðQÞ � 1� ¼
R1
0

4�r½�ðrÞ � �0� sin Qr dr

¼
R1
0

GðrÞ sin Qr dr; ð1Þ

where �0 is the average density and GðrÞ = 4�r½�ðrÞ � �0� is the

pair distribution function. This is also a convenient way to

obtain SðQÞ from computer-generated structural models, as

�ðrÞ and hence GðrÞ is rather straightforward to compute.

Of interest here is the structure factor (Egami & Billinge,

2003) in the small Q (corresponding to large distance) limit,

SðQ! 0Þ, which has rarely been discussed in the context of

amorphous modeling but which is actually of considerable

interest. We will refer to this limit as the long-wavelength limit

of the structure factor, which can be measured by small-angle

elastic scattering (i.e. diffraction) experiments using either

X-rays or neutrons; it is of significance theoretically as it

contains information about how far the system is from thermal

equilibrium, which will be discussed later. In order to obtain

any kind of reliable estimate of Sð0Þ from computer-generated

models, it is necessary for the model to be large, and in this

paper we focus on the large models of amorphous silicon and

vitreous silica developed by Mousseau, Barkema and Vink

(Vink et al., 2001; Vink & Barkema, 2003), from which we will

show that a reliable estimate for Sð0Þ can be extracted.

From general considerations (Hansen & McDonald, 1986),

there is a sum rule relating the limit SðQ! 0Þ to the variance

in the number of atoms N within a volume V, namely

Sð0Þ ¼ hN2
i � hNi2

� �
=hNi ð2Þ

in the thermodynamic limit as V !1. In this paper, we

demonstrate that the structure factor in the small Q limit is

small but non-zero for realistic and large enough models of

amorphous silicon and vitreous silica so that numerical values

can be obtained with some confidence. For crystals, with no

variance in the density owing to their periodicity, equation (2)

gives Sð0Þ = 0. Note that there are no assumptions about

thermal equilibrium in the derivation of (2), which is of purely

geometrical origin (Torquato & Stillinger, 2003).

If further assumptions about thermal equilibrium and

ergodicity are made, there is the additional result, well known

in liquid theory (Hansen & McDonald, 1986), that relates

number fluctuations to the isothermal compressibility �T,

namely

hN2i � hNi2
� �

=hNi ¼ �0kBT�T : ð3Þ

This relation assumes that all the states of a system at

temperature T governed by a potential are sampled according

to Boltzmann statistics. Hence for liquids (and other ther-

modynamic ergodic systems in thermal equilibrium), we have

Sð0Þ ¼ �0kBT�T : ð4Þ



Equation (4) is also true for multi-component chemically

ordered systems if �0 is interpreted as the atomic number

density and Sð0Þ = SNNð0Þ is a Bhatia–Thornton structure

factor (Bhatia & Thornton, 1970; Salmon, 2006, 2007), where

N refers to the number of atoms (although see the caveat

about this in x3).

1.1. Amorphous materials

Amorphous silicon is perhaps the furthest from equilibrium

of all non-crystalline materials. This is because it is highly

strained, with most of the strain being taken up by deviations

of the bond angles from their ideal tetrahedral value of 109.5�.

Each silicon atom has three degrees of freedom. The impor-

tant terms in the potential are the bond stretching and angle

bending forces around each atom. There are four covalent

bonds at each silicon atom, each of which is shared, giving a

net of two bond stretching constraints per atom. Of the six

angles at each silicon atom, five are independent, giving a total

of seven constraints per atom. As there are considerably more

constraints than degrees of freedom, the network is highly

over-constrained (Thorpe, 1983). In thermal equilibrium,

silicon cycles between crystalline solid and liquid forms. There

is no glass transition. However, amorphous silicon can be

prepared by various techniques involving very fast cooling and

provides an extreme example of a non-equilibrium state.

Vitreous silica is a bulk glass, which contains very little

strain, as can be seen as follows. The important constraints are

the bond stretching and angle bending forces associated with

the silicon atoms, as in amorphous silicon. The angular forces

at the oxygen ions are weak (Sartbaeva et al., 2006). The total

number of constraints per SiO2 unit is four Si—O bond

stretching constraints plus five angular forces at the Si giving a

total of nine constraints. However, the number of degrees of

freedom per SiO2 is also nine (three per atom). The system is

therefore isostatic and not over-constrained (Thorpe, 1983).

Thus, the strong Si—O bond stretching and O—Si—O angle

bending forces are well accommodated (although the much

weaker Si—O—Si bond stretching force not so), so that vitr-

eous silica is closer to thermal equilibrium than amorphous

silicon, although not close enough that equation (4) can be

used. However, equation (4) is much more likely to be obeyed

if the fictive temperature Tf at which the glass was formed is

used instead of T (including for the compressibility). A much

slower decrease in Sð0Þ is observed as the temperature is

decreased below Tf owing to the freezing out of thermal

vibrations about a fixed topology, as shown in the extensive

and informative experiments of Levelut et al. (Levelut et al.,

2002, 2005, 2007), which we discuss in x4.

1.2. Computer models

There are a number of high-quality periodic computer-

generated models for amorphous silicon. The first set of

coordinates is from a small model with 4096 atoms (henceforth

called the 4096 atom model) (Djordjevic et al., 1995), built

within a cubic super-cell with sides of length L = 43.42 Å. The

average bond length is a = 2.35 Å, equal to the known value

for crystalline silicon, and the model has the same density as

crystalline silicon, which is about right for structurally good

samples of amorphous silicon containing few voids, defects etc.

The network was constructed using the Wooten–Winer–

Weaire (WWW) technique (Wooten et al., 1985; Djordjevic et

al., 1995), based on locally restructuring the topology of

crystalline silicon, while keeping the number of atoms and

covalent bonds fixed, until the ring statistics settle down and

there are no Bragg peaks apparent in the diffraction pattern.

The second model contains 100 000 atoms (referred to as

the 100K model) within a cubic super-cell of side L = 124.05 Å,

with an average bond length of a = 2.31 Å, and was built using

a modified WWW technique (Vink et al., 2001) based on

previous work by Barkema & Mousseau (2000). We note that

the models of Barkema & Mousseau have the narrowest

angular variance (�9�) at the silicon atoms ever achieved in a

non-crystalline tetrahedral network, and they also avoid the

issue of possible crystal memory effects in WWW-type models

as they use a non-crystalline atomic arrangement initially. The

100K model, like other models built by Barkema & Mousseau

(2000), has a density�5% above that of crystalline silicon and

void-free amorphous silicon. The reason why this model has a

higher density is not entirely clear, but it may be necessary to

let the angular variance increase back up to �11� in order to

obtain the experimental density of amorphous silicon. The

correlation between this angular spread and the density needs

further study. The increase in density may also perhaps be

caused by the Keating potential used not being quite up to this

level of sophistication. This difference should not affect

the limit SðQ! 0Þ to first order, as a uniform isotropic

compression or expansion of the whole structure leaves the

relative number of fluctuations invariant in the thermo-

dynamic limit.

A very large model of vitreous silica (300K model) has been

produced by the same group (Vink & Barkema, 2003) by first

decorating the 100K amorphous silicon model with an oxygen

ion between pairs of silicon ions and relaxing appropriately.

With only a few exceptions, all silicon atoms maintain only

oxygen atoms as covalently bonded neighbors and vice versa.

An important difference between the 100K amorphous silicon

and the 300K vitreous silica models is that, by effectively

changing the fundamental unit from a silicon atom to a corner-

sharing SiO2 tetrahedron, the system is no longer over-

constrained but instead isostatic (Thorpe, 1983), a point that

was discussed in x1.1. One might expect the greater number of

degrees of freedom and the lower internal stress of the vitr-

eous silica model to affect the structure factor, as vitreous

silica is much closer than amorphous silicon to being in

thermal equilibrium. We will return to this point later.

2. Calculation of the structure factor in the limitQ! 0

2.1. Directly from the set of pair separations

The structure factor SðQÞ can be calculated in a number of

ways, some of which are more useful (i.e. smoother) than

others when extrapolating to Q! 0. We focus first on
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amorphous silicon, a material with a single atomic species. The

structure factor can be computed directly from the set of atom

coordinates by taking the spherical average of

SðQÞ ¼ 1þ
1

Nh f i2

X
j6¼k

f �k fj expðiQ 	 rjkÞ; ð5Þ

where fj is the scattering factor of atom j. A spherical average

yields

SðQÞ ¼ 1þ
1

Nh f i2

X
j6¼k

f �k fj

sin Qrjk

Qrjk

; ð6Þ

where the sum j 6¼ k goes over all pairs of atoms (excluding

the self terms) in the periodic cubic super-cell of size L, and is

evaluated at Qlmn = ð2�=LÞðl 2 þm2 þ n2Þ
1=2 where l, m and n

are integers. Here h f i is the average scattering factor.

The computational approach using (6) suffers from two

problems. The first is that there are of order N2 terms in the

sum, which becomes somewhat computationally demanding

for large models. Second, and more importantly, there are

finite size effects at small Q, even with periodic boundary

conditions, creating a peak in SðQÞ at the origin of finite width

�1/L and amplitude N. The peak at small Q, studied by small-

angle X-ray or neutron scattering, is given by the convolution

of the � function that would exist at the origin if the model

were infinite with a function related to the shape of the box in

which the model exists (Lei et al., 2009). This problem at small

Q could in principle be alleviated by subtracting the peak at

the origin owing to the finite size of the model (or sample),

where the form of the peak is known algebraically for a limited

set of shapes (Lei et al., 2009; Goodisman, 1980; Goodisman &

Coppa, 1981; Kodama et al., 2006) and can be determined

numerically for others. The numerical subtraction of two large

numbers OðNÞ would lead to errors of Oð1Þ, which is the order

of the answer required. A better approach to finding SðQÞ in a

form suitable for extrapolation to small Q is described below.

We note that it is SðQÞ in the limit as Q! 0 that is of interest,

and not Sð0Þ itself, as Q = 0 is a singular point.

2.2. Fourier transform approach

As a way to circumvent issues associated with the finite size

of the sample that affect small Q, the structure factor SðQÞ can

be obtained from GðrÞ via the sine Fourier transform given

in (1). It appears from the form of (1) as though the limit

SðQ! 0Þ depends upon the sine transform of GðrÞ alone, and

thus the behavior of GðrÞ at large r does not contribute much

to the limit SðQ! 0Þ [see Fig. 2 for an example of GðrÞ]. This

can be shown to be false by expanding (1) in powers of Q and

keeping only the lowest-order terms that would dominate in

the small Q limit. To the lowest order in Q,

Sð0Þ ¼ 1þ
R1
0

4�r2 �ðrÞ � �0

� �
dr ¼ 1þ

R1
0

rGðrÞ dr; ð7Þ

which depends on the integral of rGðrÞ, not GðrÞ. This addi-

tional factor of r increases the sensitivity of SðQ! 0Þ to the

details of the decay in GðrÞ at large distances. Oscillations in

GðrÞ associated with a single reference atom are known to

persist out to large distances (Levashov et al., 2005) and are a

serious concern when computing SðQ! 0Þ from a model. In

practice, the use of (7) to find the limit SðQ! 0Þ also suffers

from poor convergence, although it is superior to using (6).

2.3. Sampling volume method

Quite generally, even in the absence of thermal equilibrium,

the small Q limit SðQ! 0Þ is related in the thermodynamic

limit to number (or density) fluctuations within sub-regions of

volume V according to (2). As we only have models of finite

size, even with periodic boundary conditions it is not possible

to determine the limit directly and it is necessary to extra-

polate to the N ! 1 limit as best we can. The approach of

extrapolating SðQÞ as Q! 0 suffers from finite size effects

that cause oscillations about the ideal SðQÞ which would be

obtained for an infinite model. It is difficult to disentangle the

finite size effects from the underlying ideal SðQÞ, making

accurate extrapolation always challenging.

A more accurate determination of SðQ! 0Þ can be

achieved through (2). The equality states that the relative

variance in the number of atoms within an ensemble of

randomly placed bounded convex volumes (Torquato & Stil-

linger, 2003) is equal to Sð0Þ in the limit that the sampling

volume goes to infinity. For a finite sampling volume of fixed

shape, the variance in the number of atoms within the

enclosed volume, which samples all possible positions and

orientations equally, can be divided into terms that scale as the

volume, those that scale as the surface area, and those with

lower-order dependencies on the length scale of the enclosed

volume (Torquato & Stillinger, 2003). If R describes such a

sampling length scale, then the relative variance, which divides

the variance by the average number of atoms within the

sampling volume, can be expressed as the sum of a volume

term of order R0, a surface term of order R�1, and higher-

order terms. It is the volume term that is the primary focus

here.

Atomic structures for which the number variance does not

depend on volume are called hyperuniform, examples of

which are materials with a periodic lattice, as their unit cells

have well defined volume and density. The number variance

for such systems is related to the Gauss circle problem (Bleher

et al., 1993; Torquato & Stillinger, 2003; Levashov et al., 2005).

The structure factor for crystals is zero, as the structure factor

SðQÞ is zero for all values of Q smaller than that associated

with the first Bragg peak, leading to the result SðQ! 0Þ = 0.

Also the relative variance of the number fluctuations is clearly

zero on length scales that are much greater than the size of the

unit super-cell. This result is only strictly true in the absence of

diffuse scattering at a temperature of absolute zero, with no

zero-point motion etc. Note that it is important to take the

limit Q! 0 so as to avoid the singularity at the origin. For all

periodic models at large enough length scales (corresponding

to small enough Q), the structure factor will go to zero as the

long-wavelength limit is approached, owing to the hyper-

uniformity associated with the crystallinity. Nevertheless we

can obtain meaningful results if we restrict ourselves to
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distances less than the size of the super-cell and Q values that

are small (�1/L, where L is the linear dimension of the

supercell) but not too small.

For non-crystalline systems, like amorphous silicon and

vitreous silica, we will show that determining the relative

variance of NðRÞ for various sampling radii R and extra-

polating the result as R!1 provides a much more precise

method of extracting the limit SðQ! 0Þ from a finite model.

Indeed it is the optimal procedure. The relative variance has

been thoroughly described by Torquato & Stillinger (2003)

and equation (58) from their paper can be written for sphe-

rical sampling volumes as

hNðRÞ
2
i � hNðRÞi2

hNðRÞi
¼ 1� �0

4�

3
R3
þ

1

n

Xn

i6¼j

�ðrij; RÞ; ð8Þ

where n is the number of atoms in the model, and the function

�ðrij; RÞ is the fractional intersection volume of two (conti-

nuum) spheres, with radii R and centers separated by rij. The

function �ðrij; RÞ is proportional to the probability of two

points, separated by rij, both being contained within a

randomly placed sphere of radius R, and has a form given by

Torquato & Stillinger (2003) in equation (A11) as

�ðr; RÞ ¼ 1�
3

4

r

R
þ

1

16

�
r

R

�3

¼

�
1�

r

2R

�2�
1þ

r

4R

�

if r 
 2R ð9Þ

and zero if r > 2R. This is just the shape function that is widely

used in describing scattering from spherical micro-crystallites

(see, for example, Lei et al., 2009), but is used in quite a

different context here, as it is merely an arbitrary but conve-

nient sampling volume. Using the real-space pair density �ðrÞ
to convert the sum in (8) into an integral, we can write

hNðRÞ
2
i � hNðRÞi2

hNðRÞi
¼ 1� �0

4�

3
R3 þ

R1
0

4�r2�ðrÞ�ðr; RÞ dr:

ð10Þ

Using the identity

�0

4�

3
R3 ¼ �0

R1
0

4�r2�ðr; RÞ dr ð11Þ

we obtain the following result,

hNðRÞ2i � hNðRÞi2

hNðRÞi
¼ 1þ

R1
0

4�r2½�ðrÞ � �0��ðr; RÞ dr ð12Þ

which can be conveniently re-written as

hNðRÞ
2
i � hNðRÞi2

hNðRÞi
¼ 1þ

R1
0

rGðrÞ�ðr; RÞ dr: ð13Þ

Comparing (13) with (7), they are clearly equivalent as

R!1, because the integrand in (13) contains �ðr; RÞ which

tends to unity for all r as R!1. The presence of �ðr; RÞ

arises due to the finite nature of the sampling volume, and acts

as a natural convergence factor for the integral in (7). Note

that the relative variance of NðRÞ is not related to SðQÞ except

in the limit as both R!1 and Q! 0. The sampling volume

factor �ðr; RÞ for a sphere can be written as a Taylor expansion

in integer powers of 1/R, allowing the relative variance to be

written in the form

hNðRÞ
2
i � hNðRÞi2

hNðRÞi
¼ aþ b=RþOð1=R3Þ; ð14Þ

where a = Sð0Þ is the desired result and b describes the surface

dependence associated with the sampling volume. In

conjunction with (2), equation (14) is therefore a simple but

exact relation that allows one to obtain the structure factor

SðQ! 0Þ from a large model structure contained within a

super-cell that periodically repeats, and avoids problems

associated with extrapolating an oscillating function. We have

found this to be the best possible procedure.

The use of the shape function as a convergence factor, as

seen in (13), can be generalized to all values of Q. By inserting

the shape function into the integrand of (1) and solving for

SðQÞ, one obtains

SðQÞ ¼ 1þ
R1
0

4�r2½�ðrÞ � �0�ðsin Qr=QrÞ�ðr; RÞ dr

¼ 1þ
R1
0

rGðrÞðsin Qr=QrÞ�ðr; RÞ dr: ð15Þ

The limiting result as R!1 can be estimated from an

extrapolation by the same technique as for the Q! 0 case

previously discussed. The advantage of using (15) over (1) and

(6) is that the added convergence factor removes the oscilla-

tions in SðQÞ that are artefacts of the finite size of the model

and gives good results at all Q.

3. Results

3.1. Amorphous silicon

One major focus of this paper is to determine the limit

SðQ! 0Þ for amorphous silicon from computer models which

serves as a prediction for this important material. As discussed

earlier, there is more than one way to find the limit SðQ! 0Þ,

and we will explain the numerical results obtained from all of

them here.

The first approach is shown in Fig. 1, where we show the

most direct calculation of SðQÞ using (6) at the points Qlmn =

ð2�=LÞðl 2 þm2 þ n2Þ
1=2 determined by the super-cell. While

this gives a good overall description of SðQÞ, it is very limited

at small Q and extrapolation or analytic continuation to Q = 0

is not possible, even for the much larger 100K model. This is

because the finite size oscillations are too severe. At small Q,

the scattering is just the shape factor of a spherically averaged

cube (Lei et al., 2009; Goodisman, 1980; Goodisman & Coppa,

1981; Kodama et al., 2006). Note that the higher density of the

100K model leads to a shift of the peaks to slightly larger Q

values. Note also that the structure factor approaches unity at

large Q as it must, which sets the scale for comparison for the

limit SðQ! 0Þ. No harmonic phonons (or zero-point motion

etc.) were added to any of the results in this paper. The

inclusion of harmonic phonons would have the effect of
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adding a term that goes as Q2 at small Q, but this would vanish

as Q! 0.

The second method is the Fourier transform method in

which SðQÞ is determined from the sine transform using (1)

with GðrÞ input from the model. Both models of amorphous

silicon, containing 4096 and 100K atoms, are used in Fig. 2

which shows the distribution GðrÞ = 4�r½�ðrÞ � �0]. Note the

differences in the two silicon models. The difference of 5% in

the densities is apparent at small r where GðrÞ = �4�r�0, and

by the small shift in the peak positions. For comparison, the

average separation of bonded silicon atoms determined from

the first peak is 2.35 Å in the 4096 atom model but only 2.31 Å

in the 100K model. An isotropic contraction of the whole

system does not affect the limit SðQ! 0Þ, so to first order the

overly dense 100K model should give appropriate values in

the limit, as there is no length metric in the limit Q! 0.

The structure factor can be found by applying (1) using GðrÞ

for each model. Only the structure factor of the 100K model is

shown in Fig. 3, where even here the difficulty of trying to

extrapolate to Q = 0 is again apparent, although the situation

is improved somewhat from the direct method shown in Fig. 1.

From the inset of Fig. 3 that displays SðQÞ at small Q, the

structure factor of the 100K model still shows significant but

reduced oscillations owing to finite size effects. Of course

these oscillations are even more pronounced for the 4096

atom model, which is not shown. Here GðrÞ is truncated

beyond L/2 (half the width of the cubic super-cell), beyond

which GðrÞ is almost but not quite zero. The source of the

oscillations is apparent from their wavelength of 2�=ðL=2Þ,

and is reduced in amplitude compared with those in Fig. 1,

because all Q values over a sphere are taken into account

and not just the Qlmn . A very approximate limit of

SðQ! 0Þ ffi 0:03 can be extrapolated by eye for the 100K

model from Fig. 3, through the ripples in the inset, but the

uncertainty is almost as large as the value itself. For the

smaller 4096 atom model, the oscillations are even larger,

making any attempt to extrapolate SðQÞ quite hopeless.

Smoothing techniques can be used to attenuate the oscilla-

tions, but they are not very convincing. There is a better

approach.

An alternative to the Fourier transform approach derived in

x2.3 involves finding the relative variance within finite

sampling volumes of increasing size (but identical shape; we

have used spheres) and extrapolating to the thermodynamic

limit. This has the great operational advantage of avoiding

oscillations. The relative variance in the number of atoms

within spheres of different radii is plotted in Fig. 4 for both

silicon models. The distribution GðrÞ can only be computed

safely out to r = L=2 owing to the periodic nature of the model.

As the sampling volume factor �ðr; RÞ for a sphere is non-zero

out to r = 2R, the relative variance should only be computed

using (13) for R 
 L=4, causing the curve for the 4096 model

to terminate at a larger value of 1=R = 4=L than that for the

100K model. The relative variance for the 100K model shows a

definite linear region within the interval 12 Å < R < 20 Å or

0:05 Å
�1
< 1=R < 0:083 Å

�1
. From Fig. 2, the lower limit
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Figure 2
The pair distribution function GðrÞ for amorphous silicon for the 4096
atom model (rough red line) and the 100K model (smooth black line).

Figure 3
The structure factor SðQÞ for amorphous silicon obtained from equation
(1) for the 100K model. The inset shows the small Q region expanded.

Figure 1
The structure factor for amorphous silicon is calculated directly using
equation (6) at the super-cell values Qlmn , shown in the inset as red circles
for the 4096 atom model and black crosses for the 100K model.



Rmin = 12 Å corresponds to the distance at which strong

correlations in atom pair separations all but vanish. The upper

limit Rmax = 20 Å corresponds to the radius at which the

relative variance within the spherical volumes begins to

deviate noticeably from its linear behavior owing to the finite

size of the periodic model (Salacuse et al., 1996). For the 100K

model, the maximum possible radius given the sampling

volume argument above is L=4 = 31 Å, so 20 Å ’ L=6

represents a conservative and safe cut-off. If the largest

sampling volume for which the relative variance maintains

linear behavior is assumed to be determined by the ratio of the

width of the sampling volume to the width of the model, we

would expect the linear region to be entirely absent for the

4096 atom model, as Rmax = L=6 ffi 7:2 Å is less than the lower

limit Rmin = 12 Å. Indeed this is what is observed in Fig. 4 for

the 4096 atom model, as the oscillations at large values of 1/R

are still significant by the time the lower limit of 4/L is reached.

These observations would imply that there is a critical size that

a model should be in order for a good extrapolation to

SðQ! 0Þ in the thermodynamic limit to be possible. At a

minimum, the width of the box (or, for general shapes, the

minimum diameter) should be greater than six times the

distance over which strong correlations in atomic pair

separations persist in order for a linear fitting window to exist.

For amorphous silicon, this bare minimum would correspond

to a periodic super-cell with sides of length 70 Å containing

�18 000 atoms. To obtain a window of decent size for the

linear fit, it would be very difficult to work with a model of less

than �50 000 atoms.

The value of the limit SðQ! 0Þ found from linear extra-

polation over the linear region of the 100K model is SðQ! 0Þ

= 0:035� 0:001, where the uncertainty represents the spread

in the values of the intercept that result for slightly different

choices of the fitting interval. Applying the same extrapolation

technique for all Q values, according to (15), results in a

structure factor similar to that of Fig. 3 but without the

oscillations due to the finite size of the model, as shown in

Fig. 5. The large Q values are unaffected by using the

convergence factor in (15), but there is a significant effect at

small values of Q.

In order to compare with experiment, the Q values of the

structure factor for the 100K model shown in Fig. 5 were

decreased to 0.985 of their original value to account for the

fact that the model has a higher density than that of crystalline

silicon and hence void-free amorphous silicon. The rescaled

structure factor shows good agreement with the experimental

results of Laaziri et al. (1999b) (whom we thank for providing

original data points used in Fig. 5) except for differences in the

low Q region and in the amplitude of the oscillations. This

requires further modeling to determine the effects of the

angular spread at the silicon atom, ring statistics etc. on the

structure factor.

3.2. Vitreous silica model

The behavior of density fluctuations for the 100K model of

amorphous silicon can be compared with the large model of

vitreous silica (300K model) produced by Vink & Barkema

(2003).

In general for polyatomic systems, it is useful to define

partial pair distribution functions (PPDFs) and their corre-

sponding Faber–Ziman partial structure factors (Faber &

Ziman, 1965). For vitreous SiO2 , the three PPDFs are GSiSiðrÞ,

GOOðrÞ and GSiOðrÞ, where the PPDFs are computed using the

subsets of atom types specified by their respective subscripts.

Fig. 6 displays the PPDF GSiSiðrÞ superimposed on GðrÞ from

the 100K silicon model, where the silicon distances in the 300K

model have been decreased by a factor of 1.33 to make the

silicon atom densities the same.
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Figure 5
Comparison of the structure factor for amorphous silicon (as implanted,
blue crosses, and annealed, black circles) experimentally determined by
Laaziri et al. (1999b) with the structure factor for the 100K model (red
curve, no points), rescaled to make the density of the model match that of
crystalline silicon and hence void-free amorphous silicon.

Figure 4
The relative variance in the number fluctuations in amorphous silicon is
computed within spheres of various radii R using the sampling volume
method. The extrapolated value, shown in red, of S(0), which is just the
limit of the relative variance for small 1/R, is given by SðQ! 0Þ = 0.035�
0.001 for the 100K model using equation (14). The vertical dashed lines
indicate the range over which the linear fit was performed. It can be seen
that the smallest value of 1/R for the 4096 atom model is larger than the
upper limit of the range over which the relative variance is sufficiently
linear and therefore reliable extrapolation would be difficult.



Of course the two distributions are not the same, nor should

they be, but are quite surprisingly close. Using the rescaled

PPDF GSiSiðrÞ of vitreous silica as an example of a distorted

model for amorphous silicon leads to SSiSiðQ! 0Þ =

0:039� 0:001 by applying the sampling volume method, and is

close to the value of SSiSiðQ! 0Þ = 0:035� 0:001 for the 100K

model obtained in the previous section. Thus it appears that

the fourfold tetrahedral coordination of the amorphous

network may be the most important factor in determining

SðQ! 0Þ for amorphous silicon.

The three associated Faber–Ziman partial structure factors

(for which primed notation will henceforth be used) S 0SiSiðrÞ,

S 0OOðrÞ and S 0SiOðrÞ can be found from their respective PPDFs

through the sine Fourier transform (Salmon, 2007)

Q S 0��ðQÞ � 1
� �

¼ �o

R1
0

4�r g��ðrÞ � 1
� �

sin Qr dr; ð16Þ

where �o is the number density associated with all the atoms in

the system, gðrÞ is the reduced pair distribution function [a

scaled version of �ðrÞ such that it oscillates about unity at large

r], and � and � define the atom pairs used in the distribution

function. This definition of the partial structure factor differs

from the intuitive definition that would be obtained if atoms of

each type were treated in isolation. This more intuitive defi-

nition (for which we use unprimed notation) is represented by

partial structure factors of the form

Q S��ðQÞ � 1
� �

¼ ��
R1
0

4�r g��ðrÞ � 1
� �

sin Qr dr; ð17Þ

where �� is the number density of atoms of type �. These two

distributions are simply related by

S��ðQÞ � 1 ¼ ð���oÞ S 0��ðQÞ � 1
� �

¼ c� S 0��ðQÞ � 1
� �

; ð18Þ

where c� = ��=�o is the fraction of atoms of type �. Three

Bhatia–Thornton structure factors (Bhatia & Thornton, 1970;

Salmon, 2006, 2007; Fischer et al., 2006) that describe corre-

lations between atom number and concentration can be

defined in terms of the three S 0��ðQÞ according to

SNNðQÞ ¼ c2
SiS
0
SiSiðQÞ þ c2

OS 0OOðQÞ þ 2cSicOS 0SiOðQÞ; ð19aÞ

SccðQÞ ¼ cSicO 1þ cSicO S 0SiSiðQÞ þ S 0OOðQÞ
��

�2S 0SiOðQÞ
��
; ð19bÞ

SNcðQÞ ¼ cSicO cSi S 0SiSiðQÞ � S 0SiOðQÞ
� ��

�cO S 0OOðQÞ � S 0SiOðQÞ
� ��

: ð19cÞ

Three of the six unknowns in (19) can be found in the limit as

Q! 0 by applying the sampling volume method [equation

(13)] to GSiSiðrÞ, GOOðrÞ and GNNðrÞ [avoiding terms of type

G��ðrÞ with � 6¼ �]. It should be noted that the pair of func-

tions GNNðrÞ and SNNðQÞ weight all atoms equally, causing

SNNðQÞ to differ from the total structure factor for materials

with atoms of more than one scattering length. The fitting

interval inside of which the relative variance is linear in 1/R

was found to be 13 Å < R < 19 Å, where 19 Å ’ L=9 is more

strict than the limit found for the 100K model of amorphous

silicon, suggesting the necessity for an even larger model than

the 100K in order to make an accurate estimate of the limit

SðQ! 0Þ. Fitting within this interval results in the limiting

values SSiSiðQ! 0Þ = 0.039 � 0.001, SOOðQ! 0Þ = 0.078 �

0.002 and SNNðQ! 0Þ = 0.116 � 0.003, as shown in Fig. 7.

Inserting these values into the three Bhatia–Thornton rela-

tions [equations (19)] and solving for the remaining three

unknowns, one finds SSiOðQ! 0Þ = 0.116, SccðQ! 0Þ = �1.5

� 10�5 and SNcðQ! 0Þ = 1.0 � 10�5. Within the uncertainty

of the extrapolation, and remembering that there are �105

atoms in the model, the limits of the last two Bhatia–Thornton

structure factors are consistent with zero, i.e. SccðQ! 0Þ =

SNcðQ! 0Þ = 0. This reflects the fact that the chemical

disorder is virtually zero, as only several out of the 100 000

silicon atoms in the model are bonded to another silicon atom

instead of to an oxygen atom.
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Figure 7
The relative variance of the number fluctuations in vitreous silica within
sampling spheres of radii R. The variance is computed using the sampling
volume method and plotted against 1/R. The extrapolated values, shown
in red, are given by SSiSiðQ! 0Þ = 0.039 � 0.001, SOOðQ! 0Þ = 0.078 �
0.002 and SNNðQ! 0Þ = 0.116 � 0.003.

Figure 6
The pair distribution function GSiSiðrÞ for the 300K vitreous silica model
(thin red line) rescaled by a length factor of 1/1.33 and superimposed on
the same distribution from the 100K amorphous silicon model (thick
black line, as in Fig. 2).



If the two quantities SccðQ! 0Þ and SNcðQ! 0Þ are

exactly zero, which we will take to be true from now on, the

relationship between the limiting values of the other structure

factors simplify greatly, and can all be expressed in terms of a

single structure factor rather than the original three. Equa-

tions (19a)–(19c) can be rewritten as

S 0SiSiðQ! 0Þ ¼ SNNðQ! 0Þ � cO=cSi

� 	
; ð20aÞ

S 0OOðQ! 0Þ ¼ SNNðQ! 0Þ � cSi=cO

� 	
; ð20bÞ

S 0SiOðQ! 0Þ ¼ SNNðQ! 0Þ þ 1: ð20cÞ

From (18), one can write down the relations

S 0SiSiðQÞ ¼ 1=cSi

� 	
SSiSiðQÞ � cO=cSi

� 	
; ð21aÞ

S 0OOðQÞ ¼ 1=cO

� 	
SOOðQÞ � cSi=cO

� 	
: ð21bÞ

In the thermodynamic limit, the previous five equations relate

the limiting values of the six structure factors, and thus there is

only one independent quantity. If the independent quantity is

chosen to be SNNð0Þ, the limiting values of the other structure

factors that one would find if each atom type was taken in

isolation can be expressed in terms of the Bhatia–Thornton

number correlation SNNð0Þ as

SSiSiðQ! 0Þ ¼ cSiSNNð0Þ; ð22aÞ

SOOðQ! 0Þ ¼ cOSNNð0Þ: ð22bÞ

The scaling factors that exist between these three values when

there is no chemical disorder in the system explains why the

values found from the sampling volume method follow a 1:2:3

ratio [SSiSiðQ! 0Þ = 0.039 � 0.001, SOOðQ! 0Þ = 0.078 �

0.002 and SNNðQ! 0Þ = 0.116 � 0.003], as cSi = 1/3 and cSi =

2/3. Note that this scaling is only present as Q! 0 and of

course is not true for general values of Q. All the analysis of

the 300K vitreous silica model can therefore be summarized in

a single number by there being virtually no chemical disorder

and SNNðQ! 0Þ = 0.116 � 0.003.

The expression for the limiting value of the differential

scattering cross section per atom obtained from scattering

experiments also simplifies if no chemical disorder is present.

The general form of the differential cross section per atom

(Fischer et al., 2006; Salmon, 2006, 2007), namelyP
��

c�c�b�b� S 0��ðQÞ � 1
� �

þ
P
�

c�b2
�; ð23Þ

where b� is the scattering length of atoms of type �, can be

simplified in the limit Q! 0 by writing the three Faber–

Ziman partial structure factors S 0SiSiðQ! 0Þ, S 0OOðQ! 0Þ and

S 0SiOðQ! 0Þ in (23) in terms of SNNðQ! 0Þ ¼ Sð0Þ using

equations (21) and (22). Performing the substitutions, one

finds that the Q! 0 limit of the differential cross section per

atom simplifies to

cSibSi þ cObO

� 	2
Sð0Þ: ð24Þ

Equation (24) is often used to interpret experimental data

(Levelut et al., 2002, 2005, 2007; Wright et al., 2005; Wright,

2008) under the assumption that the AX2 units can be

considered as the basic entity, with an associated scattering

factor (cSibSi þ cObO). It was not clear to us until doing the

present analysis that this was justified, as two out of the four

neighboring oxygen atoms are arbitrarily associated with a

silicon atom, and, in addition, this SiO2 unit may straddle the

perimeter of the sampling volume, leading to partial counting.

Nevertheless, the above derivation shows that this widely used

phenomenological assumption [equation (24)] is indeed

justified and correct, subject to there being no chemical

concentration fluctuations, so that each silicon atom is bonded

to four oxygen atoms and each oxygen atom is bonded to two

silicon atoms.

Experiments to determine the absolute value of Sð0Þ are not

easy because the scattering has to be normalized to a standard,

and also because of multiple-scattering corrections that are

best determined by performing measurements on a number of

samples of varying thickness and extrapolating to zero thick-

ness. This complicated procedure has been carried out

recently by Wright (Wright et al., 2005; Wright, 2008) who,

using equation (24), obtains a value for vitreous silica of

0.0300 � 0.0016 per formula unit, which by incorporating the

factor of three (the number of atoms per chemical group)

leads to a value for the structure factor of Sð0Þ = 0.0900 �

0.0048. Note that Wright was able to get down to

Q ’ 0:02 Å
�1

, which is about a factor of ten better than can be

obtained with the 300K model. The model value of Sð0Þ =

0.116 is about 20% higher than the experimental value, which

we comment on below. Nevertheless, this is the first calcula-

tion of Sð0Þ from a model of vitreous silica and is gratifyingly

close to the experimental value. The density of the vitreous

silica sample (Wright et al., 2005; Wright, 2008) and the model

are the same to within 0.1%.

We note that Salmon (Salmon, 2006, 2007; Salmon et al.,

2007) has made measurements of structure factors on a

number of AX2 glasses using isotopes so that the partial

structure factors can be found, and hence SNNðQÞ. These

experiments are a real tour de force but not specifically

designed to measure the Q! 0 limit. Measurements were not

taken at very small Q (down to Q ’ 0:5 Å
�1

), but very

approximate values can be extrapolated from the plots of the

partial structure factors at small Q, giving values between

�0.1 and �0.15 for GeO2, GeSe2 and ZnCl2 (Salmon, 2006,

2007; Salmon et al., 2007). These are quite close to the accurate

value for vitreous silica obtained by Wright et al. and to the

model calculation, suggesting perhaps that this value, Sð0Þ ’

0.10, is a general feature of AX2 glasses, in the same way that a

value Sð0Þ ’ 0.035 is characteristic of single-component

tetrahedral glasses.

The situation is rather more complex in general (Bhatia &

Thornton, 1970), when there is chemical ordering, as equation

(4) is generalized to

SNNð0Þ � �
2Sccð0Þ ¼ �0kBT�T; ð25Þ

where � is a size difference factor associated with the two types

of atoms, and gives the (usually small) second term in (25). In

vitreous silica, this term involving � is zero because Sccð0Þ = 0.

It is expected to also be very small in the liquid phase and so

we will ignore it in the comments in the next section.
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4. Comments

For an ergodic system in thermal equilibrium, like a liquid, we

expect equation (4) to hold. It is useful to use this relation to

assess how far amorphous silicon, as well as other amorphous

materials and glasses, are from equilibrium. The compressi-

bility of amorphous silicon is between 2 � 10�11 m2 N�1 and

3� 10�11 m2 N�1, obtained from silicon–aluminium alloy data

extrapolated to zero aluminium doping (Keita & Steinemann,

1978). Using �0 = 0.05 atoms Å�3 (Custer et al., 1994; Laaziri et

al., 1999a), and using a room temperature of 300 K, we find

from (4) that 0.004 < Sð0Þ < 0.006, which is an order of

magnitude less than the computer model value of 0.035. If we

use the melting temperature of crystalline silicon of roughly

T = 1685 K (Grimaldi et al., 1991), this estimate increases to

0.023 < Sð0Þ < 0.035, where we note that both the density �0

and the compressibility �T are only weakly temperature

dependent so that almost all of the temperature dependence

in (4) comes through the temperature factor T itself. Never-

theless, the figures based on high temperatures are in the

general area of the value of Sð0Þ = 0.035 determined from the

100K model, which is satisfying. Note that the comparison is a

little less favorable if we use the melting temperatures of

1220 K to 1420 K for amorphous silicon (Donovan et al., 1989;

Grimaldi et al., 1991), which leads to 0.017 < Sð0Þ < 0.030.

The limiting value SðQ! 0Þ has also been estimated

indirectly through measurement of the sound velocity, as

discussed by Blairs & Joasoo (1980). The limit SðQ! 0Þ ’

0.0501 was determined for silicon at a melting temperature of

1685 K, not from a scattering experiment but by applying (4),

and using the measured value of the density and the value of

the isothermal compressibility determined from the sound

velocity. The limit SðQ! 0Þ = 0.035 � 0.001 found for

the 100K model would correspond to an effective fictive

temperature of Tf ’ 1177 K; not an unreasonable value for

silicon. Note that we have not assigned any temperature

dependence to either the density or the compressibility in (4)

in determining the effective fictive temperature.

The most extensive and informative data on the structure

factor for liquid and vitreous silica has been assembled by

Levelut and co-workers (Levelut et al., 2002, 2005, 2007). They

have used small-angle X-ray scattering, with wavevectors

Q down to � 0:027 Å
�1

, which is comparable with that

obtained from the 300K vitreous silica model used in this

paper. Absolute measurements are difficult in this region [a

notable exception being the work of Wright et al. (2005)] and

so it was necessary to normalize to the assumed liquid beha-

vior at high temperatures using (4). However, there are

discrepancies between compressibility values and so there is

some uncertainty as to what values to take (Levelut et al.,

2005). Note that there is a factor of 900 = (30)2 between the

data of Wright and Levelut, owing to the electron units used

by Levelut, which in turn differs by a factor of three from the

conventional definition of the structure factor as used here

and follows Salmon (Fischer et al., 2006; Salmon, 2006, 2007).

To try to gain some perspective, we have used another set of

compressibility measurements (Bucaro & Dardy, 1976; Wright

et al., 2005; Wright, 2008) and assumed (4) to be true in order

to renormalize the Levelut data upward by a factor of 1.43,

which is now re-plotted in Fig. 8. This scale factor is the ratio of

the liquid compressibility value quoted by Bucaro & Dardy

(1976) to the average of the two liquid compressibility values

quoted by Levelut et al. (2005), i.e. 1.43 = 8.50/[(6.16 + 5.69)/2].

Fig. 8 raises many interesting questions relating to glass

structure and the fictive temperature (Geissberger & Gale-

ener, 1983). It is very plausible from the data of Levelut et al.

(Levelut et al., 2002; Levelut et al., 2005; Levelut et al., 2007)

that the fictive temperature is very close to where the extra-

polated straight lines from the glass phase intersect with the

liquid structure factor. Note that the temperature dependence

is considerably lower in the glass phase and is due to the

thermal vibrations about a fixed network topology (Weinberg,

1963; Wright et al., 2005; Wright, 2008). A most important and

intriguing question is: how is information about the fictive

temperature embedded in the glass at room temperature?

Such information presumably involves ring statistics and

possibly the oxygen angle distribution, but it is subtle and will

require careful modeling to resolve. All models used will have

to be as large as those used in this paper to obtain reliable

values for Sð0Þ, as discussed earlier. The dashed lines drawn

through the two isolated points in Fig. 8, parallel to the

Levelut et al. lines, suggest a fictive temperature of �1360 K

for the Wright sample and an effective fictive temperature of

�1780 K for the 300K vitreous silica model of Vink &

Barkema (2003), which is close to the value of 1740 K used for

the start of the quench in their computer model. Note that

while this close agreement is promising, one must not forget
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Figure 8
The points and fitted blue solid lines in both the glass and liquid regions
of silica are digitized from Fig. 2 of Levelut et al. (2005) and multiplied by
a factor of 1.43, as described in the text. The five blue lines in the glass
phase correspond to fictive temperatures of 1373 K (open circles), 1473 K
(open squares), 1533 K (solid squares), 1573 K (open diamonds) and
1773 K (solid circles). The lower isolated point (cyan) is from Wright et al.
(2005) and the upper isolated point (green) is from the computer model
used in this paper. The cyan and green dashed lines are drawn parallel to
the solid blue lines to indicate the expected temperature trend and
corresponding fictive temperature.



that the computer model is quenched at a much more rapid

rate than an actual sample, and it is not clear just how close the

values of the experimental fictive temperature and the

‘computer’ fictive temperature should be. From these results,

one might argue that the quench rate is perhaps of secondary

importance to the fictive temperature in determining the glass

structure, but this is speculative and requires further study.

5. Concluding remarks

The structure factor SðQ! 0Þ for two non-crystalline mate-

rials, amorphous silicon and vitreous silica, lies between that of

a crystalline solid (where it is close to zero) and that of their

respective liquid states. From the computer model of Mous-

seau, Barkema and Vink, the structure factor for amorphous

silicon is computed to be Sð0Þ = 0.035 � 0.001. This non-zero

value is caused by density fluctuations, similar to those found

in a liquid, even though the system is far from thermal equi-

librium, and seems to be determined largely by the tetrahedral

coordination in the amorphous material. This result awaits

direct experimental confirmation, when it will also be inter-

esting to measure the temperature dependence, caused by

thermal fluctuations about the network structure.

For vitreous silica, the results depend on both the actual

temperature and the fictive temperature, as demonstrated

clearly by the experimental results of Levelut et al. The large

periodic computer model of Vink & Barkema gives a

reasonable value S(0) = 0.116 � 0.003 for vitreous silica at

room temperature which corresponds to an experimental

fictive temperature of about 1780 K, close to 1740 K used

computationally to achieve the quenched structure. The

intriguing question that remains unanswered is how the

information about the fictive temperature is encoded within

the network structure, and we speculate that it is in the distinct

ring statistics and spread of Si—O—Si angles, but this remains

to be demonstrated.
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